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Abstract

Automatically scoring metaphor novelty has been largely un-
explored, but could be of benefit to a wide variety of NLP ap-
plications. We introduce a large, publicly available metaphor
novelty dataset to stimulate research in this area, and propose
a regression-based approach to automatically score the nov-
elty of potential metaphors that are expressed as word pairs.
We additionally investigate which types of features are most
useful for this task, and show that our approach outperforms
baseline metaphor novelty scoring and standard metaphor de-
tection approaches on this task.

Introduction
The vast majority of computational work on figurative lan-
guage to date has framed metaphor detection as a binary
(metaphor/non-metaphor) classification task. However, in
reality language lies along a graded continuum, with figura-
tive expressions ranging from highly conventional (or even
fossilized) to highly novel1 or creative (Gibbs 1984). While
most conventional metaphors could in theory be handled by
word sense disambiguation, novel metaphors are potentially
more problematic for NLP applications (Shutova 2015;
Haagsma and Bjerva 2016). Automatically scoring the nov-
elty of potential metaphors could allow for conventional
and novel metaphors to be processed differently, enabling
better-performing language understanding systems. Novel
metaphors are also more difficult for humans to process (Lai,
Curran, and Menn 2009), and therefore automatic metaphor
novelty scoring could additionally be useful for applica-
tions such as automatic essay scoring, automatic assess-
ment of cognitive health, and automatic generation of cogni-
tively stimulating discussion topics. Cognitive health appli-
cations offer a particularly intriguing downstream use case
for metaphor novelty scoring; probable Alzheimer’s disease
patients, for example, often struggle with comprehending
novel metaphors but not conventional metaphors (Amanzio
et al. 2008).
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1We define novelty herein as the frequency with which one may
be expected to encounter a metaphor. Thus, if a metaphor is quite
common (e.g., “Two hours passed.”) it has low novelty, whereas if
it is surprising or unique (e.g., “Her laughter waltzed through the
courtyard.”) it has high novelty.

The dearth of research on identifying metaphor novelty
has at least partially been due to a lack of publicly avail-
able data with which to train and evaluate such systems
(Haagsma and Bjerva 2016). In this work, our contributions
are as follows: we (1) contribute a large (18,000+ instances)
dataset annotated for metaphor novelty and make it pub-
licly available to stimulate research in this area.2 We also
(2) conduct an analysis of a wide range of features, both
novel and drawn from existing work on standard metaphor
detection, to determine what linguistic and conceptual char-
acteristics are most indicative of metaphor novelty. Finally,
we (3) contribute a regression-based metaphor novelty scor-
ing approach3 that outperforms baseline metaphor novelty
scoring and standard metaphor detection approaches and es-
tablishes a benchmark on this dataset for future work.

Related Work
Detecting Metaphor Novelty
Work that has specifically set out to capture metaphor nov-
elty includes a machine learning approach that made use of
selectional preference features (Haagsma and Bjerva 2016)
and a rule-based approach based on bigram counts and
WordNet hyponymy relations (Krishnakumaran and Zhu
2007). The former group was ultimately unable to pur-
sue their original goals due to a lack of adequate training
data and instead applied their approach to general, binary
metaphor detection.

The latter distinguished between sentences containing
novel and conventional metaphors (a binary classification
task). To evaluate their work, they expanded the metaphors
in the Berkeley Master Metaphor List (Lakoff 1994) into ap-
proximately 1728 simple sentences, and then labeled those
sentences as containing either “dead” or “live” metaphors.
This differs from our approach in that our system learns from
and assigns instances with a continuous value ranging be-
tween 0 (“not a metaphor”) and 3 (“highly novel metaphor”).
Krishnakumaran and Zhu also base their rules strictly on
having one of three specific constructions available (subject
IS-A object, verb-noun, or adjective-noun), and require that

2http://hilt.cse.unt.edu/resources.html
3https://github.com/natalieparde/
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the words in a pair exist in WordNet (words not in a Word-
Net hyponymy relation would always result in the sentence
being labeled as “live”). These restrictions limit the applica-
bility of the approach to real-world text, in which metaphors
may not always contain nouns and some words (literal or
metaphoric) may not exist in WordNet.

Detecting Metaphors in General
General metaphor detection (without distinguishing be-
tween grades of novelty) has been carried out in numer-
ous ways at the sentence (Dunn 2013; Dunn et al. 2014;
Krishnakumaran and Zhu 2007; Mohler et al. 2013), word
pair (Shutova, Sun, and Korhonen 2010; Gandy et al. 2013;
Tekiroglu, Özbal, and Strapparava 2015; Turney et al. 2011;
Gutierrez et al. 2016; Shutova, Kiela, and Maillard 2016),
and individual word (Beigman Klebanov, Leong, and Flor
2015; Gargett and Barnden 2015; Beigman Klebanov et
al. 2014; 2016; Özbal et al. 2016; Mohammad, Shutova,
and Turney 2016; Jang, Wen, and Rosé 2015; Schulder
and Hovy 2014; Turney et al. 2011; Jang et al. 2015;
2016) level. We choose to model the metaphor novelty of
word pairs because syntactically related pairs of words are
the smallest unit for which novelty and meaning may be con-
textually inferred. Past work on identifying metaphoric pairs
has often been constrained to specific types of pairs (e.g.,
verb-noun or adjective-noun). We loosen this restriction and
instead consider the novelty of a wide variety of syntac-
tically related pairs that contain either two content words
(noun, verb, adjective, or adverb), or a content word and a
personal pronoun. Later, we discuss specific features used in
prior metaphor detection approaches from which the feature
sets in this work were partially derived.

Existing Datasets
A number of datasets exist for binary metaphor detection
(c.f. Mohler et al. (2016) for a good overview of these).
The most popular existing metaphor dataset is the VU Am-
sterdam Metaphor Corpus (VUAMC) (Steen 2010). The
VUAMC is a subset of the BNC Baby corpus, which labels
individual words as metaphors in four genres of text: news,
conversation, fiction, and academic. The corpus includes all
metaphors, regardless of word type or novelty; however, no
distinction is made between different grades of novelty in
the annotations.

Other existing datasets include Levin et al.’s (2014) col-
lection of conventionalized conceptual metaphors, Birke and
Sarkar’s (2006) dataset of metaphoric and literal uses of
51 verbs, Tsvetkov et al.’s (2014) dataset of metaphoric
and literal adjective-noun pairs and subject-verb-object
triples, Mohammad, Shutova, and Turney’s (2016) dataset of
metaphoric and literal instances of 440 verbs, and the Berke-
ley Master Metaphor List (Lakoff 1994) which contains 208
conceptual metaphors.

Mohler et al. (2016) recently described a dataset for which
the metaphoricity of pairs of words is given one of four
discrete labels (0=“No Metaphoricity,” 1=“Possible/Weak
Metaphor,” 2=“Likely/Conventional Metaphor,” 3=“Clear
Metaphor”). Of existing corpora, this is most closely suited

Sentence Score
Thank Lyndon Johnson, his Great Society, and the
War on Poverty. 3

A measure of the protection provided to an industry
by the entire structure of tariffs, taking into account
the effects of tariffs on inputs as well as on outputs.

3

Regarding the word “fair” - I don’t think anybody can
comment on “fair” without talking to the marginal
value of a dollar, marginal effort to make a dollar, the
shift in wealth over the past 30 years, and the overall
idea that money is the fuel of the money machine.

1

The catastrophe and its aftermath displayed in sharp
relief the glories and flaws of a city fast becoming the
symbol of a nation drunk on democracy.

1

Table 1: LCC Dataset Sentences and Scores

to our task. However, the pairs have relatively low diver-
sity (there are only 1512 unique target words across all pairs
in the free version of the corpus, even when considering
“Taxes,” “taxes,” “tax,” “Tax,” “taxation,” “income taxes,”
“income tax,” etc. all as unique words). Finally, we observed
that “clear metaphors” are in some cases quite distinct from
novel metaphors. Consider the examples from Mohler et
al.’s corpus in Table 1.

The first two examples, although certainly metaphoric, are
not particularly novel (most readers are likely to have en-
countered the expression “War on Poverty” quite often). The
latter two examples were rated as weakly metaphoric, yet
they are far more novel. Thus, it appears that metaphoricity
and metaphor novelty, although in some cases correlated, are
separate characteristics with nuanced differences.

Data
We built our dataset on top of the VUAMC. To do so, we
extracted syntactically-related4 pairs of either two content
words (nouns, verbs, adjectives, or adverbs, excluding stop-
words, proper nouns, and some auxiliary verbs) or one con-
tent word and a personal pronoun, for which at least one of
the words was labeled as a metaphor in the VUAMC. We
consider these pairs to be potentially metaphoric; although
they all contain a word annotated as a metaphor, they do not
all necessarily convey the word’s metaphoric usage. For ex-
ample, in the sentence, “Her laughter waltzed through the
courtyard,” the pair {laughter, waltzed} is a novel metaphor,
whereas {courtyard, waltzed} is non-metaphoric. Our data
is publicly available under the Creative Commons Attribu-
tion ShareAlike 3.0 Unported License.

Annotations
We crowdsourced annotations using Amazon Mechanical
Turk5 (AMT) for 18,452 word pairs from the VUAMC, and
randomly divided these pairs into training (approximately
80%) and test (all word pairs from the same source docu-
ment were assigned to the same set). AMT workers were

4Stanford CoreNLP (Manning et al. 2014) was used to obtain
dependency parses and part-of-speech (POS) tags.

5www.mturk.com



asked to label each word pair with a single score based on
whether it formed a metaphor in the context of the surround-
ing sentence (0=not a metaphor) and if so, that metaphor’s
novelty from low (1) to high (3). Word pairs were grouped
into Human Intelligence Tasks (HITs) containing all poten-
tially metaphoric word pairs extracted from 10 sentences.
Five worker assignments were requested per HIT. Overall,
479 workers participated in annotating 1004 unique HITs.
For each instance in the test set, two annotations were also
collected from trained (non-AMT) annotators; these annota-
tions were used to build the gold standard to which predic-
tions were compared.

Data Filtering: We automatically filtered annotations as
they were received, rejecting HITs that were completed ab-
normally quickly or by workers whose performance was
deemed substandard (i.e., spammers or deliberately mali-
cious workers), using a filtering algorithm based on work-
ers’ correlations with one another (Parde and Nielsen 2017).
Workers with substandard or questionable performance were
disqualified from accepting future HITs.

Adjudication Procedure
The crowdsourced annotations from the training data were
automatically aggregated to a continuous label using the
regression-based approach developed by Parde and Nielsen
(2017). Briefly, this approach trains a random subspace re-
gression model on data that has been labeled by both crowd
workers and experts, using features based on annotation dis-
tribution and presumed annotator quality, to predict optimal
aggregations of crowd labels.

To determine gold standard labels for the test set, the
annotations from the two trained annotators for a given
instance were averaged, unless the annotators disagreed
strongly (e.g., a 0 and a 3) or if one of the annotators did not
agree with the score produced by averaging. In those cases
(111 total), instances were forwarded to a third-party adju-
dicator to make the final decision. Inter-annotator agreement
(measured using kappa with quadratic weights between the
four “classes” of 0, 1, 2, and 3) across all 3162 gold standard
instances, prior to any adjudication or annotator discussion,
was κ = 0.435, demonstrating that scoring metaphor nov-
elty is a complex task even for humans. However, most of
the annotators’ disagreements were minor; when relaxing
our agreement constraints and considering scores within a
distance of 1 from one another to agree, as is the conven-
tion established by Mohler et al. (2016), κ = 0.897. Our
published dataset includes the original crowdsourced anno-
tations for each instance, the aggregated label for each train-
ing instance, and the gold standard label for test instance.

Dataset Statistics
As in naturally-occurring text, in our dataset there are many
more instances near the lower end of the metaphor novelty
spectrum (e.g., “She spent five hours on that!”) than at the
higher end (e.g., “She had a technicolor personality.”). The
label distribution across the full dataset is shown in Figure
1 (binned in 0.125 intervals). The word pairs in our dataset
include occurrences of 4079 (3990 when case-insensitive)
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Figure 1: Metaphor Novelty Label Distribution

unique metaphoric words (as per original VUAMC annota-
tions); thus, the metaphors in our dataset encompass a more
diverse vocabulary than has been seen in prior work.

Method
We frame metaphor novelty scoring as a supervised re-
gression task, in which features extracted from word
pairs labeled with continuous values ranging from 0 (not
metaphoric) to 3 (highly novel metaphor) are used to train
a model to predict the metaphor novelty of unseen test pairs.
We introduce some new features expected to be benefi-
cial for scoring metaphor novelty specifically, and examine
some existing features (previously found useful for standard
metaphor detection) in this new context.

Feature Description
We divide our features into subsets and justify their use
in the subsections below, describing them in Tables 2 and
3. Some of these features are frequency-based (e.g., co-
occurrence), while others take semantic content into ac-
count (e.g., psycholinguistic features, word vectors, and
topic probability features, among others).

Psycholinguistic Features: We build several feature sets
based on the psycholinguistic characteristics of concrete-
ness, imageability, sentiment, and ambiguity. Specifically,
for each psycholinguistic characteristic we compute the fea-
tures described in Table 2.

Concreteness and Imageability: Many researchers have
found concreteness (Tsvetkov et al. 2014; Beigman Kle-
banov et al. 2014; Beigman Klebanov, Leong, and Flor
2015; Beigman Klebanov et al. 2016; Gargett and Barn-
den 2015; Tekiroglu, Özbal, and Strapparava 2015; Jang,
Wen, and Rosé 2015; Özbal et al. 2016) and imageability
scores (Broadwell et al. 2013; Tsvetkov et al. 2014; Gargett
and Barnden 2015; Tekiroglu, Özbal, and Strapparava 2015;
Özbal et al. 2016) to be useful for general metaphor detec-
tion. We wished to explore whether the usefulness of these
features transfers to scoring metaphor novelty. We computed
each of the features in Table 2 for both concreteness and



Feature Description
Score 2: The scores (from the resource(s) associated

with the specified characteristic) for the gover-
nor and modifier in the pair. Missing values are
filled with a score of 0.

Score Diff. 1: Absolute difference between the scores.
Score
Macro
Avg.

2: Let W be the set of content words in the
sentence not including either word in the
pair, and SDIFF(x, y) be the score difference
between words x and y. MACROAVG(g) =

(SDIFF(g,m) +

∑
w∈W

SDIFF(g,w)

|W | )/2 for
the governor (g), and we also compute
MACROAVG(m) for the modifier (m).

Table 2: Psycholinguistic Features

imageability, using concreteness scores from the Brysbaert
concreteness dataset (2014) (scaled to a 0-1 range) and from
the MRC Psycholinguistic Database (Wilson 1988) (MR-
CPD), and imageability scores from the expanded MRC+
dataset (Liu et al. 2016).

Sentiment: Metaphors generally convey more emotion
than literal statements, and when presented with pairs of
sentences, humans often rate the more metaphoric sentence
as also being more emotional (Mohammad, Shutova, and
Turney 2016). Thus, it may be hypothesized that the level
of emotion associated with one or both of the words in
a pair is indicative of the pair’s metaphor novelty. Jang
et al. (2016) explored sentiment-based features for general
metaphor detection by including counts of words that fell
into the LIWC affective processes categories (positive emo-
tion, negative emotion, anxiety, anger, and sadness) in the
context of discussion posts. Gargett and Barnden (2015)
employed valence, arousal, and dominance scores from the
ANEW dataset as features in their binary metaphor detec-
tion approach. We compute the features in Table 2 using
SentiWordNet (Baccianella, Esuli, and Sebastiani 2010) to
explore the role of sentiment in predicting metaphor novelty.

Ambiguity: Although ambiguity has not previously been
used as a feature for general metaphor detection, it may
be useful for predicting metaphor novelty; the words com-
prising conventional metaphors may have higher ambiguity
scores if their metaphoric sense is common enough to be
considered a case of regular polysemy. We use MRCPD’s
ambiguity scores to compute the features in Table 2 to test
this theory.

Co-Occurrence: We also compute features based on co-
occurrence statistics for each word pair. We describe these
features in Table 3 (features prefaced by PMI). Although
the specific features we implement have not been used to
detect metaphor in the past, other researchers have incor-
porated somewhat similar strategies. Tekiroglu, Özbal, and
Strapparava (2015) sought to determine whether sensorial
words were likelier to be metaphors by computing the co-
occurrence frequency of potentially metaphoric words with
words representing each of the five senses, and Schulder and
Hovy (2014) also found term relevance to be a useful feature

for binary word-level metaphor detection. We expect word
co-occurrence may be useful for scoring metaphor novelty
simply because the words in highly novel metaphors are un-
likely to have occurred together in text frequently, whereas
the words forming conventional metaphors likely have. We
compute our co-occurrence features using n-gram counts
from Google Web1T (Brants and Franz 2006).

Syntax-based and/or Positional (SynPos): We include
several features based on syntax or word position in our fea-
ture set, from which we expect the classifier to learn sim-
ple rules. The most common of these in prior work have
been part-of-speech tags, which Schulder and Hovy (2014),
Özbal et al. (2016), and Beigman Klebanov, Leong, and Flor
(2014; 2015) all included in their binary metaphor detection
approaches with success. Our syntax-based and positional
features are Word Distance, Dependency Type, and POS in
Table 3.

Conceptual Features: Tsvetkov et al. (2014), Shutova,
Kiela, and Maillard (2016), and Gutierrez et al. (2016)
have previously incorporated word embeddings in their bi-
nary metaphor detection work. These could aid in predicting
metaphor novelty by providing some conceptual insight re-
garding the words’ semantic properties, as well as additional
co-occurrence information. We use Google’s pretrained
Google News embeddings to generate 300-dimensional vec-
tors for the governor and modifier, and include these as fea-
tures. We also compute the cosine similarity between the two
feature vectors.

Researchers have also had success employing topic mod-
els for standard metaphor detection in the past. Jang et al.
(2016) considered the topic of the sentence containing the
word being classified, and how that topic differed from sur-
rounding sentences. Beigman Klebanov et al. (2014), Jang,
Wen, and Rosé (2015), and Özbal et al. (2016) include fea-
tures based on a word’s probability of belonging to different
topic models, and Broadwell et al. (2013) use topic chains
(a noun phrase and all subsequent noun phrases that refer to
the original noun phrase) as part of their approach to binary
metaphor detection. We hypothesize that some conceptual
mappings may be more likely to produce novel/conventional
metaphors than others; topic modeling allows us to test this
theory by automatically predicting the conceptual domains
to which the words in the pair belong. We build topic mod-
els from two sources: Project Gutenberg books,6 and English
Wikipedia.7 For each set, we compute Topic Probability and
Probability Word in Top Topic features, described in Table 3.

SynSet: Finally, we build several features incorporating
lexical information from WordNet (Fellbaum 1998). These
features are designed to capture the number of senses asso-
ciated with a word. Similarly to the ambiguity features, the
synset features are driven by the premise that words with a
larger number of commonly-known senses are likelier to be
present in conventional metaphors than novel metaphors.

6https://www.gutenberg.org/
7https://www.wikipedia.org/



Feature Description
PMI 1: The PMI between the two words. Distance between words was considered when computing frequencies;

thus, if g was the fifth word in a sentence and m was the seventh word, FREQ(g) would be the number
of trigrams in Web1T beginning with g, FREQ(m) would be the number of trigrams ending with m, and
FREQ(g,m) would be the number of trigrams beginning with g and ending with m. The probability of g
occurring, P(g), was then equivalent to FREQ(g) divided by the summed frequency of all trigrams in Web1T.
PMI between the two words was therefore: PMI(g,m) = log P(g,m)

P(g)×P(m)
.

PMI with Sentence 2: The average PMI between each word in the pair and the other content words in the surrounding sentence,
excluding the other word in the pair.

PMI Span 2: The PMI between the governor g (or modifier) and the span s of text from g through the modifier m
(or governor) (e.g., in “frowning like a thunderstorm” where m is thunderstorm and g is frowning, PMI is
computed between “frowning like a” and “thunderstorm”). Computed as: PMI(s, g) = log P(s,g)

P(s)×P(g)
.

PMI w/Sentence − PMI 2: The difference between each of the values computed in PMI with Sentence and the PMI between g and m.
Word Distance 1: Absolute distance between g and m, by number of words.
Dependency Type 24: One-hot encoded vector representing the syntactic dependency type relating g and m.
POS 30: One-hot encoded vectors representing the parts of speech for both g (15) and m (15).
Word Vector 600: For each word in the pair, a 300-dimensional Word2Vec (Mikolov et al. 2013) embedding.
Cosine Similarity 1: The cosine similarity between the two embeddings.
Topic Probability 400: The probability that each word belongs to each of 200 topics (100 learned from Project Gutenberg and

100 learned from Wikipedia). Topic models were trained using latent dirichlet allocation.8

Probability Word in Top
Topic

4: For each set of topic models, for both g and m, the probability that the word belongs to the topic to which
the other word had the highest probability of belonging.

Max (Min) SynSets 2: The maximum (minimum) of two values: the number of synsets for g, and the number of synsets for m.
SynSet Avg. 1: The average number of synsets for g and m.
SynSet Diff. 1: The absolute value of the difference between the number of synsets for g and m.

Table 3: Other Features

Regression Approach
We implemented our approach using a deep neural network.
To tune parameters, including the number of hidden layers,
we randomly split the training set into 75% training and 25%
validation such that all instances originating from the same
document remained in the same subset. Optimal parameters
as determined via tuning on the validation set are presented
in Table 4. The activation and dropout noted in the table were
applied to all layers excluding the output layer. The neural
network was implemented using Keras9 with TensorFlow10.

Evaluation
Each experimental case was trained on the training data
(15,290 instances with aggregated labels), and tested on the
test data (3162 instances with gold labels). Since our sys-
tem’s output is continuous, we report the correlation coeffi-
cient (r) and root mean squared error (RMSE) for each case.
We detail our overall performance evaluation and provide a
feature analysis in the subsections below.

Metaphor Novelty Experiments
Baseline Approaches: As noted earlier, Haagsma and
Bjerva (2016) were ultimately unable to build their metaphor

8https://radimrehurek.com/gensim/
9https://keras.io/

10https://www.tensorflow.org/

Parameter Value
Layers 5
Inputs 1091
Units in Hidden Layer 1 256
Units in Hidden Layer 2 32
Units in Hidden Layer 3 16
Units in Hidden Layer 4 8
Units in Layer 5 (Output Layer) 1
Activation SoftSign
Dropout 0.1
Kernel Initializer Glorot Normal
Optimizer Nadam
Loss Function Mean Squared Error
Epochs 5
Train Batch Size 32
Test Batch Size 16

Table 4: Neural Network Parameters

novelty detector due to lack of adequate data. It is addition-
ally impossible for us to compare one-to-one with Krish-
nakumaran and Zhu’s (2007) approach because theirs was
designed to classify sentences (not word pairs) and was not
equipped to handle potential non-metaphors. Their rules also
relied entirely on WordNet, which was not an issue with
their dataset; when analyzing a random sample of their data



we found that all words that their algorithm could have con-
sidered were on WordNet. However, our data comes from
less-convenient real-world texts so this is not true of our in-
stances.11 The results that we provide herein will establish
a benchmark to accelerate future research in metaphor nov-
elty scoring. Since it is impossible to compare directly to
prior work on this task at the present, we compare to the
following here:

Random: A simple baseline that outputs a random con-
tinuous variable ranging between 0 and 3 for each instance.

Distribution-Aware Random: Learns a probability den-
sity function12 from the training set labels and outputs a ran-
dom continuous variable following that distribution for each
instance.

Mean Value: Predicts the mean training value for each
instance.

Tsvetkov et al.: Trains and tests Tsvetkov et al.’s (2014)
metaphor detection approach on our dataset. Tsvetkov et
al.’s approach learns a random forest classifier from con-
ceptual semantic features (including abstractness and image-
ability, WordNet supersenses, and vector space word rep-
resentations) to predict whether subject-verb-object triples
or adjective-noun pairs are metaphoric. Their approach was
designed to learn from discrete, binary classes; to use it
with our dataset, we modified their source code such that
it trains scikit-learn’s Random Forest Regressor (which
learns from and predicts continuous values) instead of scikit-
learn’s Random Forest Classifier (which requires discrete
labels). We compare to this approach to validate that scor-
ing metaphor novelty is a distinct task from regression-
based metaphor detection, and thus simply applying even
extremely high-performing metaphor detection approaches
may not yield outstanding results (Tsvetkov et al.’s approach
achieved an accuracy of 86% for general metaphor detection
on adjective-noun pairs).

Results: We compare our method (training and testing on
all valid types of word pairs) with Random, Distribution-
Aware Random, and Mean Value in Table 5, and our method
with Tsvetkov et al.’s metaphor detection approach (train-
ing and testing only on adjective-noun pairs since their ap-
proach was not designed for other types of word pairs) in
Table 6. The adjective-noun subset of our dataset included
3151 instances, and its labels were distributed similarly to
the dataset as a whole. We ran our approach 10 times13 and
reported the average r and RMSE.

As seen in Tables 5 and 6, our approach outperforms
the alternatives in terms of both r and RMSE. Improve-
ment in r for our approach is orders of magnitude higher
relative to Random, Distribution-Aware Random, and Mean

11Note that it would likewise be problematic for us to run our
approach on their dataset because we could not guarantee that we’d
be considering the same pairs as them (the pairs considered by their
algorithm are not explicitly specified in the dataset), and we would
have to label pairs based on their sentence’s label since pair-level
annotations are not provided. The presence of a potentially large
number of mislabels could significantly affect results.

12We do this using SciPy’s Gaussian kernel density estimator.
13Weights are initialized with a random seed.

Method r RMSE
Random 0.0048 1.4658
Distribution-Aware Random 0.0007 0.8143
Mean Value 0.0000 0.7192
Ours 0.4600 0.6502

Table 5: Comparison with Baseline Approaches

Method r RMSE
Tsvetkov et al. 0.2716 0.7804
Ours 0.4483 0.7312

Table 6: Comparison with Tsvetkov et al.’s Approach (only
adjective-noun pairs per their design)

Value, and a 65.1% improvement over Tsvetkov et al. De-
creases in RMSE for our approach are 55.7%, 20.2%, 9.6%,
and 6.3% relative to Random, Distribution-Aware Random,
Mean Value, and Tsvetkov et al., respectively. All results re-
ported are statistically significant (p < 0.0001).

Feature Analysis
Feature Sets: We conduct a comparative analysis of the
feature sets described earlier (CONCRETENESS, IMAGE-
ABILITY, SENTIMENT, AMBIGUITY, CO-OCCURRENCE,
SYNPOS, TOPIC, EMBEDDING, and SYNSET) to provide a
general understanding of which types of features contribute
most effectively toward scoring metaphor novelty. We first
perform an ablation study by removing one feature set at
a time from the set of all features. Then, with the highest-
performing (i.e., its removal leads to the largest drop in r)
feature set, we conduct a bottom-up feature evaluation by
adding one feature set at a time to it to further tease apart the
contributions of individual feature sets.

Results: The results of our ablation study are presented
in Table 7. The highest-performing individual feature set
is SYNPOS, the syntax-based and positional features. The
removal of those features leads to a 21.8% drop in corre-
lation relative to ALL. EMBEDDINGS are a close second;
their removal leads to a 17.8% drop in correlation. Since the
highest-performing feature set in the ablation study is SYN-
POS, we use it as the basis of our bottom-up feature analysis
(see Table 8). We find that combining EMBEDDINGS with
SYNPOS yields the highest performance. SYNPOS and EM-
BEDDINGS were also the only two types of features whose
removal led to significant differences in the predicted scores
versus using all features, and only SYNPOS + EMBEDDING
was significantly different from SYNPOS († indicates statis-
tical significance (p < 0.001) in Tables 7 and 8).

Discussion
The results unearth some interesting findings. The success
of our approach relative to Tsvetkov et al.’s, a 65.1% im-
provement when training and testing on the same instances,
substantiates our position that highly effective metaphor de-
tection approaches cannot simply be transferred to scoring



Feature Set r RMSE
ALL 0.4600 0.6502
ALL - CONCRETENESS 0.4597 0.6501
ALL - IMAGEABILITY 0.4568 0.6529
ALL - SENTIMENT 0.4581 0.6514
ALL - AMBIGUITY 0.4551 0.6551
ALL - CO-OCCURRENCE 0.4530 0.6470
ALL - SYNPOS 0.3595† 0.6792†

ALL - TOPIC 0.4563 0.6511
ALL - EMBEDDING 0.3779† 0.6696†

ALL - SYNSET 0.4579 0.6515

Table 7: Feature Ablation

Feature Set r RMSE
SYNPOS 0.3566 0.6733
SYNPOS + CONCRETENESS 0.3623 0.6722
SYNPOS + IMAGEABILITY 0.3610 0.6734
SYNPOS + SENTIMENT 0.3623 0.6728
SYNPOS + AMBIGUITY 0.3578 0.6729
SYNPOS + CO-OCCURRENCE 0.3596 0.6729
SYNPOS + TOPIC 0.3581 0.6728
SYNPOS + EMBEDDING 0.4523† 0.6484†

SYNPOS + SYNSET 0.3568 0.6731

Table 8: Additional Feature Analysis

metaphor novelty with the expectation of similarly high per-
formance.

We discover that SYNPOS features are particularly dis-
criminative with our data. Since our dataset contains
many instances that straddle the boundary between non-
metaphoric and highly conventionalized metaphors, this in-
dicates that learned rules based on part-of-speech combi-
nations, dependency types, and word distance are relatively
effective at delineating that boundary without the introduc-
tion of additional semantic or co-occurrence features. Word
embeddings were the second-highest performing feature set
and also led to the largest performance increase when paired
with SYNPOS in the bottom-up feature experiment. The use-
fulness of EMBEDDINGS indicates that alongside shallower
syntactic cues, deeper semantic context is an important clue
in determining metaphor novelty. In contrast, psycholinguis-
tic features used commonly for general metaphor detection
proved to be only mildly discriminative between shades of
metaphor novelty. Likewise, topic-based features were not
particularly useful, suggesting that both novel and conven-
tional metaphors arise from a wide and often overlapping
range of cross-domain mappings.

Conclusion
In this work, we introduce and make publicly available a
new, large dataset in an underdeveloped terrain: automati-
cally scoring metaphor novelty. We perform a comparative
feature analysis to study the performance of both novel fea-
tures and features originating from general metaphor de-

tection for this task. Finally, we contribute a regression
approach that learns from these features to automatically
score metaphor novelty, finding that the approach outper-
forms a strong general metaphor detection-based approach
by 65.1%. This provides evidence that scoring metaphor
novelty is a distinct task from metaphor detection with its
own unique nuances. We hope the dataset, benchmarks, and
code released here will significantly stimulate and advance
related metaphor research.
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