
Word2Vec and GloVe

Natalie Parde, Ph.D.
Department of Computer Science

University of Illinois at Chicago

CS 521: Statistical Natural Language 
Processing

Spring 2020

Many slides adapted from Jurafsky and Martin 
(https://web.stanford.edu/~jurafsky/slp3/).

https://web.stanford.edu/~jurafsky/slp3/


What is 
Word2Vec?

• Method for automatically learning dense 
word representations from large text 
corpora

critique 1.23 2.14 3.21 4.32 1.35 2.43 5.22 1.34 2.33

1/30/20 Natalie Parde - UIC CS 521 2



Characteristics of 
Word2Vec
• Non-contextual
• Fast
• Efficient to train

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3

1/30/20 Natalie Parde - UIC CS 521 3



Word2Vec

• Technically a tool for implementing word 
vectors: 

• https://code.google.com/archive/p/word2vec
• The algorithm that people usually refer to 

as Word2Vec is the skip-gram model with 
negative sampling

1/30/20 Natalie Parde - UIC CS 521 4

https://code.google.com/archive/p/word2vec/


How does 
Word2Vec work?

• Instead of counting how often each word occurs near 
each context word, train a classifier on a binary 
prediction task

• Is word w likely to occur near context word c?
• The twist: We don’t actually care about the 

classifier!
• We use the learned classifier weights from this 

prediction task as our word embeddings

1/30/20 Natalie Parde - UIC CS 521 5



None of this 
requires 
manual 
supervision.

• Text (without any other labels) is framed as implicitly supervised 
training data

• Given the question: Is word w likely to occur near context word c?
• If w occurs near c in the training corpus, the gold standard 

answer is “yes”
• This idea comes from neural language modeling (neural networks 

that predict the next word based on prior words)
• However, Word2Vec is simpler than a neural language model:

• It makes binary yes/no predictions rather than predicting words
• It trains a logistic regression classifier instead of a deep neural 

network

1/30/20 Natalie Parde - UIC CS 521 6



What does the 
classification 
task look like? 

• Assume the following:
• Text fragment: this sunday, watch the super bowl 

at 5:30 p.m.
• Target word: super
• Context window: ± 2 words

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

1/30/20 Natalie Parde - UIC CS 521 7



What does the 
classification 
task look like? 

• Goal: Train a classifier that, given a tuple (t, c) of a 
target word t paired with a context word c (e.g., (super, 
bowl) or (super, laminator)), will return the probability 
that c is a real context word

• P(+ | t,c)

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

1/30/20 Natalie Parde - UIC CS 521 8



How do we predict 
P(+ | t,c)?

• We base this decision on the similarity between the input vectors 
for t and c

• More similar vectors → more likely that c occurs near t

1/30/20 Natalie Parde - UIC CS 521 9



High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w
and a neighboring context 
word c as positive 
samples

super bowl

1/30/20 Natalie Parde - UIC CS 521 10



High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

super bowl

super very
super fork

super calendar

1/30/20 Natalie Parde - UIC CS 521 11



High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Use logistic regression to 
train a classifier to 
distinguish between those 
two cases

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

1/30/20 Natalie Parde - UIC CS 521 12



High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Use logistic regression to 
train a classifier to 
distinguish between those 
two cases

• Use the weights from that 
classifier as the word 
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

1/30/20 Natalie Parde - UIC CS 521 13



Just one more thing….

• Remember, words are represented using input vectors 
(somehow, we need to create these)

• We’re using the similarity between those vectors to inform our 
classification decisions

1/30/20 Natalie Parde - UIC CS 521 14



High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w and 
a neighboring context word 
c as positive samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Use logistic regression to 
train a classifier to 
maximize these 
probabilities to distinguish 
between positive and 
negative cases

• Use the weights from that 
classifier as the word 
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

1/30/20 Natalie Parde - UIC CS 521 15



0 1 0 0 0
0 1 06 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

High-Level 
Overview: 

How 
Word2Vec 

Works

• Represent all words in a 
vocabulary as a vector

• Treat the target word w and 
a neighboring context word 
c as positive samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Find the similarity for each 
(t,c) pair and use this to 
calculate P(+|(t,c))

• Use logistic regression to 
train a classifier to 
maximize these 
probabilities to distinguish 
between positive and 
negative cases

• Use the weights from that 
classifier as the word 
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

1/30/20 Natalie Parde - UIC CS 521 16

0 0 1 0 0



How do we compute
P(+ | t,c)?

• This is based on vector similarity
• We can assume that vector similarity is proportional to the dot 

product between two vectors
• Similarity(t,c) ∝ 𝑡 $ 𝑐

1/30/20 Natalie Parde - UIC CS 521 17



A dot product doesn’t give us a 
probability though….

• How do we turn it into one?
• Sigmoid function (just like we did with logistic regression!)
• We can set:

• P(+|t,c) = &
&'()*$+

1/30/20 Natalie Parde - UIC CS 521 18



Just like with logistic regression, the 
sigmoid function doesn’t automatically 
return a probability.

• What does it return?
• A number between 0 and 1

• However, we can follow our approach from logistic regression to convert it to a 
probability---all we need to do is make sure the sum of the values returned for our two 
possible events (c is or is not a real context word) equals 1.0

• P(+ | t,c) = &
&'()*$+

• P(- | t,c) = 1 - P(+ | t,c) = ()*$+

&'()*$+

1/30/20 Natalie Parde - UIC CS 521 19



So far, we’ve 
been assuming 
we have a single 
context word.

• What if we’re considering a window containing multiple context words?
• Simplifying assumption: All context words are independent
• So, we can just multiply their probabilities:

• P(+|t,c1:k) = ∏-.&
/ &

&'()*$+0
, or

• log P(+|t,c1:k) = ∑-.&/ log &
&'()*$+0

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|t,c) = &
&'()*$+

P(-|t,c) = ()*$+

&'()*$+

1/30/20 Natalie Parde - UIC CS 521 20



With this in 
mind….

• Given t and a context window of k words c1:k, we can assign a probability based on how 
similar the context window is to the target word

• We do so by applying the logistic function to the dot product of the embeddings of t with 
each context word c

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|super, 
watch) = .7

P(+|
super, 
the) = 

.5

P(+|super, 
bowl) = .9

P(+|
super
at) = 

.5

P(+|t,c1:k) = .7 * .5 * .9 * .5 = .1575

1/30/20 Natalie Parde - UIC CS 521 21



Computing P(+ | t,c) 
and P(- | t,c): ✓

• However, we still have some unanswered 
questions….

• How do we determine our input 
vectors? 

• How do we learn word embeddings 
throughout this process (this is the real 
goal of training our classifier in the first 
place)?

1/30/20 Natalie Parde - UIC CS 521 22



Input Vectors

• Input words are typically represented as one-hot vectors
• Bag-of-words approach: Place a “1” in the position 

corresponding to a given word, and a “0” in every other 
position

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
super bowl

1/30/20 Natalie Parde - UIC CS 521 23



Learned Embeddings

• Embeddings are the weights learned for a two-layer classifier that predicts 
P(+ | t,c)

• Recall from our discussion of logistic regression:
• 𝑦 = 𝜎 𝑧 = &

&'()9
= &

&'():$;<=

• This is quite similar to the probability we’re trying to optimize:
• P(+ | t,c) = &

&'()*$+

1/30/20 Natalie Parde - UIC CS 521 24



What does this look like?

super

Start with an input t

1/30/20 Natalie Parde - UIC CS 521 25



What does this look like?

0

0

1

…

0

Get the one-hot vector for t

su
pe

r

1/30/20 Natalie Parde - UIC CS 521 26



What does this look like?

…

Feed it into a layer of n units 
(where n is the desired 
embedding size), each of 
which computes a weighted 
sum of inputs0

0

1

…

0

su
pe

r

1/30/20 Natalie Parde - UIC CS 521 27



What does this look like?

…

Feed the outputs from those 
units into a final unit that 
predicts whether a word c is 
a valid context for t

P(+ | t,c)

0

0

1

…

0

su
pe

r

1/30/20 Natalie Parde - UIC CS 521 28



What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)
Create one of those output 
units for every possible c

0

0

1

…

0

su
pe

r

1/30/20 Natalie Parde - UIC CS 521 29



Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Each unit in the intermediate 
layer applies a specific 
weight to each input it 
receives

𝑧 = 0 ∗ 𝑤& + 0 ∗ 𝑤B + 1 ∗ 𝑤D + ⋯+ 0 ∗ 𝑤F

1/30/20 Natalie Parde - UIC CS 521 30



Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Since our inputs are one-hot 
vectors, this means we’ll end 
up with a specific set of 
weights (one for each unit) 
for each input word

𝑧 = 0 ∗ 𝑤& + 0 ∗ 𝑤B + 1 ∗ 𝑤&D + ⋯+ 0 ∗ 𝑤F

𝑧 = 0 ∗ 𝑤& + 0 ∗ 𝑤B + 1 ∗ 𝑤BD + ⋯+ 0 ∗ 𝑤F

𝑧 = 0 ∗ 𝑤& + 0 ∗ 𝑤B + 1 ∗ 𝑤FD + ⋯+ 0 ∗ 𝑤F
1/30/20 Natalie Parde - UIC CS 521 31



These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

𝑧 = 0 ∗ 𝑤& + 0 ∗ 𝑤B + 1 ∗ 0.1 + ⋯+ 0 ∗ 𝑤F

𝑧 = 0 ∗ 𝑤& + 0 ∗ 𝑤B + 1 ∗ 0.7 + ⋯+ 0 ∗ 𝑤F

𝑧 = 0 ∗ 𝑤& + 0 ∗ 𝑤B + 1 ∗ 0.8 + ⋯+ 0 ∗ 𝑤F

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6

1/30/20 Natalie Parde - UIC CS 521 32



How do we optimize these 
weights over time?

• The weights are initialized to some random value for each word
• They are then iteratively updated to be more similar for words that occur in similar contexts in the 

training set, and less similar for words that do not
• Specifically, we want to find weights that maximize P(+|t,c) for words that occur in similar 

contexts and minimize P(+|t,c) for words that do not, given the information we have at the time
• Note that throughout this process, we’re actually maintaining two sets of hidden weight vectors

• One for the input (the target words)
• One for the output (the context words)

1/30/20 Natalie Parde - UIC CS 521 33



Since we initialize 
our weights 
randomly, the 
classifier’s first 
prediction will 
almost certainly be 
wrong.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0

1/30/20 Natalie Parde - UIC CS 521 34



However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

1/30/20 Natalie Parde - UIC CS 521 35



However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Adjust the embeddings (weights) for t and 
c1 so if we tried to make these predictions 
again, we’d have lower error values

1/30/20 Natalie Parde - UIC CS 521 36



However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.4
Actual: 0
Error: -0.4

1/30/20 Natalie Parde - UIC CS 521 37



Training Data

• We are able to assume that all occurrences of words in similar contexts in our training 
corpus are positive samples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

1/30/20 Natalie Parde - UIC CS 521 38



Training Data

• However, we also need negative samples!
• In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
• We need to create our own negative examples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

1/30/20 Natalie Parde - UIC CS 521 39



Training Data

• How to create negative examples?
• Target word + “noise” word that is sampled from the training set
• Noise words are chosen according to their weighted unigram frequency 𝑝K(𝑤), where 𝛼

is a weight:
• 𝑝K(𝑤) = count(S)T

∑:U count(SU)T

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

1/30/20 Natalie Parde - UIC CS 521 40



Training Data

• How to create negative examples?
• Often, 𝛼 = 0.75 to give rarer noise words slightly higher 

probability of being randomly sampled
• Assuming we want twice as many negative samples as positive 

samples, we can thus randomly select noise words according to 
weighted unigram frequency

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
t c
super calendar
super exam
super loud
super bread
super cellphone
super enemy
super penguin
super drive

Negative Examples

1/30/20 Natalie Parde - UIC CS 521 41



Learning Skip-Gram 
Embeddings

• It is with these samples that the algorithm:
• Maximizes the similarity of the (target, context) pairs drawn from positive examples
• Minimizes the similarity of the (target, context) pairs drawn from negative examples

• It does so by applying stochastic gradient descent to optimize a cross-entropy loss function
• The target and context weight vectors are the parameters being tuned

1/30/20 Natalie Parde - UIC CS 521 42



Learning Skip-Gram Embeddings

Even though we’re maintaining two embeddings for each word 
during training (the target vector and the context vector), we only 
need one of them

When we’re finished learning the embeddings, we can just 
discard the context vector

Alternately, we can add them together to create a summed 
embedding of the same dimensionality, or we can concatenate 
them into a longer embedding with twice as many dimensions

1/30/20 Natalie Parde - UIC CS 521 43



Context window size can impact 
performance!

• Because of this, context window size is often tuned on a development set
• Larger window size → more required computations (important to consider 

when using very large datasets)

1/30/20 Natalie Parde - UIC CS 521 44



What if we want to predict a target word 
from a set of context words instead?

• Continuous Bag of Words (CBOW)
• Another variation of Word2Vec

• Very similar to skip-gram model!
• The difference:

• Instead of learning to predict a context word from a target word vector, you 
learn to predict a target word from a set of context word vectors

1/30/20 Natalie Parde - UIC CS 521 45



Skip-Gram 
vs. CBOW 
Embeddings

• Small datasets
• Rare words and phrases

In general, skip-gram 
embeddings are good with:

• Larger datasets (they’re faster to 
train)

• Frequent words

CBOW embeddings are 
good with:

1/30/20 Natalie Parde - UIC CS 521 46



Are there any 
other variations 

of Word2Vec?

• fasttext
• An extension of Word2Vec that also 

incorporates subword models
• Designed to better handle unknown 

words and sparsity in language

1/30/20 Natalie Parde - UIC CS 521 47



fasttext
• Each word is represented as:

• Itself
• A bag of constituent n-grams

super <super> <su, sup, upe, per, er>= +

1/30/20 Natalie Parde - UIC CS 521 48



fasttext
• Skip-gram embedding is learned for each constituent 

n-gram
• Word is represented by the sum of all embeddings of 

its constituent n-grams

• Key advantage of this extension?
• Allows embeddings to be predicted for unknown 

words based on subword constituents alone

Source code available online: 
https://fasttext.cc/

1/30/20 Natalie Parde - UIC CS 521 49

https://fasttext.cc/


Word2Vec and fasttext
embeddings are nice …but 
what’s another alternative?

• Word2Vec is an example of a 
predictive word embedding model

• Learns to predict whether words 
belong in a target word’s context

• Other models are count-based
• Remember co-occurrence 

matrices?
• GloVE combines aspects of both 

predictive and count-based models

1/30/20 Natalie Parde - UIC CS 521 50



Global Vectors for Word 
Representation (GloVe)
• Co-occurrence matrices quickly grow extremely large
• Intuitive solution to increase scalability?

• Dimensionality reduction!
• However, typical dimensionality reduction strategies may result in too 

much computational overhead
• GloVe learns to predict weights in a lower-dimensional space that correspond 

to the co-occurrence probabilities between words

1/30/20 Natalie Parde - UIC CS 521 51



GloVe

• Why is this useful?
• Predictive models → black box

• They work, but why?
• GloVe models are easier to interpret

• GloVe models also encode the ratios of co-occurrence probabilities between 
different words …this makes these vectors useful for word analogy tasks

1/30/20 Natalie Parde - UIC CS 521 52



How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

1/30/20 Natalie Parde - UIC CS 521 53



How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤-W𝑤X + 𝑏- + 𝑏X = log𝑋-X

Vector for ti Vector for cj

Scaler biases for ti and cj

Co-occurrence count for ticj

1/30/20 Natalie Parde - UIC CS 521 54



How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤-W𝑤X + 𝑏- + 𝑏X = log𝑋-X

Weighting function:

𝑓 𝑋-X = \(
𝑋-X
𝑥^_`

)K, 𝑋-X < 𝑋𝑀𝐴𝑋

1, otherwise

Define a cost function
𝐽 = l

-.&

m

l
X.&

m

𝑓(𝑋-X)(𝑤-W𝑤X + 𝑏- + 𝑏X − log𝑋-X )B

1/30/20 Natalie Parde - UIC CS 521 55



How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤-W𝑤X + 𝑏- + 𝑏X = log𝑋-X

Define a cost function
𝐽 = l

-.&

m

l
X.&

m

𝑓(𝑋-X)(𝑤-W𝑤X + 𝑏- + 𝑏X − log𝑋-X )B

Minimize the cost function to 
learn ideal embedding values 
for wi and wj

1/30/20 Natalie Parde - UIC CS 521 56



How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤-W𝑤X + 𝑏- + 𝑏X = log𝑋-X

Define a cost function
𝐽 = l

-.&

m

l
X.&

m

𝑓(𝑋-X)(𝑤-W𝑤X + 𝑏- + 𝑏X − log𝑋-X )B

Minimize the cost function to 
learn ideal embedding values 
for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3

1/30/20 Natalie Parde - UIC CS 521 57



In sum, GloVe is a log-bilinear model 
with a weighted least-squares objective.

• Why does it work?
• Ratios of co-occurrence probabilities have the potential to encode word 

similarities and differences
• These similarities and differences are useful components of meaning

• GloVe embeddings perform particularly well on analogy tasks

1/30/20 Natalie Parde - UIC CS 521 58



Which is best …Word2Vec or 
GloVe?

• It depends on your data!
• In general, Word2Vec and GloVe produce similar embeddings
• Word2Vec → slower to train but less memory intensive
• GloVe → faster to train but more memory intensive
• As noted earlier, Word2Vec and Glove both produce context-

independent embeddings

1/30/20 Natalie Parde - UIC CS 521 59



Evaluating Vector Models

• Add the vectors as features in a downstream NLP task, and see whether 
and how this changes performance relative to a baseline model

• Most important evaluation metric for word embeddings!
• Word embeddings are rarely needed in isolation
• They are almost solely used to boost performance in downstream tasks

Extrinsic Evaluation

• Performance at predicting word similarity

Intrinsic Evaluation

1/30/20 Natalie Parde - UIC CS 521 60



Evaluating Performance at 
Predicting Word Similarity
• Compute the cosine similarity between vectors for pairs of words
• Compute the correlation between those similarity scores and word similarity ratings for the 

same pairs of words manually assigned by humans
• Corpora for doing this:

• WordSim-353
• SimLex-999
• TOEFL Dataset

• Levied is closest in meaning to: (a) imposed, (b) believed, (c) requested, (d) 
correlated

1/30/20 Natalie Parde - UIC CS 521 61



Other Common Evaluation Tasks

• Evaluates the performance of sentence-level similarity 
algorithms, rather than word-level similarity

Semantic Textual Similarity

• Evaluates the performance of algorithms at solving analogies
• Athens is to Greece as Oslo is to (Norway)
• Mouse is to mice as dollar is to (dollars)

Analogy

1/30/20 Natalie Parde - UIC CS 521 62



Semantic Properties of 
Embeddings
• Major advantage of dense word embeddings: Ability to capture elements of meaning
• Context window size impacts what type of meaning is captured

• Shorter context window → more syntactic representations
• Information is from immediately nearby words
• Most similar words tend to be semantically similar words with the same parts of speech

• Longer context window → more topical representations
• Information can come from longer-distance dependencies
• Most similar words tend to be topically related, but not necessarily similar (e.g., waiter and 

menu, rather than spoon and fork)

1/30/20 Natalie Parde - UIC CS 521 63



Analogy

• Word embeddings can also 
capture relational meanings

• This is done by computing the 
offsets between values in the same 
columns for different vectors

• Famous examples (Mikolov et al., 
2013; Levy and Goldberg, 2014):

• king - man + woman = queen
• Paris - France + Italy = Rome

1/30/20 Natalie Parde - UIC CS 521 64



Word embeddings have 
many practical applications. • Incorporated as 

features in nearly 
every modern NLP 
task

• Useful for 
computational social 
science

• Studying word 
meaning over time

• Studying implicit 
associations 
between words

1/30/20 Natalie Parde - UIC CS 521 65



Embeddings and Historical Semantics

broadcast (1850s)

broadcast (1900s)

broadcast (1990s)

spread

sow
seed

sows
scatter

circulated

newspapers

television

radiobbc

Compute multiple embedding 
spaces, each using only texts 
from a specific historical period

Useful corpora:
Google N-grams: 
https://books.google.com/ngrams
Corpus of Historical American English: 
https://www.english-corpora.org/coha/

1/30/20 Natalie Parde - UIC CS 521 66

https://books.google.com/ngrams
https://www.english-corpora.org/coha/


Unfortunately, word embeddings can also end up 
reproducing implicit biases and stereotypes latent in text.

• Recall: king - man + woman = queen
• Word embeddings trained on news corpora 

also produce:
• man - computer programmer + woman = homemaker
• doctor - father + mother = nurse

• Very problematic for real-world applications 
(e.g., resume scoring models)

1/30/20 Natalie Parde - UIC CS 521 67



Bias and 
Embeddings

• Caliskan et al. (2017) identified the following 
known, harmful implicit associations in GloVe
embeddings:

• African-American names were more closely 
associated with unpleasantness than European-
American names

• Male names were more closely associated with 
mathematics than female names

• Female names were more closely associated with the 
arts than male names

• Names common among older adults were more 
closely associated with unpleasantness than those 
common among younger adults

• Thus, learning word representations can pose 
ethical dilemmas!

1/30/20 Natalie Parde - UIC CS 521 68



How do we keep the useful associations 
present in word embeddings, but get rid of 
the harmful ones?

• Recent research has begun examining ways to 
debias word embeddings by:

• Developing transformations of embedding spaces 
that remove gender stereotypes but preserve 
definitional gender

• Changing training procedures to eliminate these 
issues before they arise

• Although these methods reduce bias, they do not 
eliminate it

• Increasingly active area of study:
• https://fatconference.org/2020/

1/30/20 Natalie Parde - UIC CS 521 69

https://fatconference.org/2020/


Summary: 
Word2Vec 
and GloVe

• Word2Vec is a predictive word embedding approach that 
learns word representations by training a classifier to 
predict whether a context word should be associated with 
a given target word

• Fasttext is an extension of Word2Vec that also 
incorporates subword models

• GloVe is a count-based word embedding approach that 
learns an optimized, lower-dimensional version of a co-
occurrence matrix

• Word embedding models are best evaluated extrinsically, 
in downstream tasks, but can also be evaluated based on 
their ability to predict word similarity or solve analogies

• Dense word embeddings encode many interesting 
semantic properties

• Positive: Useful word associations and synonymy
• Negative: Biases and stereotypes

• Developing ways to debias word embeddings or avoid 
bias entirely is an increasingly active area of research

1/30/20 Natalie Parde - UIC CS 521 70


